An Application of Scattering Theory to the Spectrum of the Laplace-beltrami Operator

نویسنده

  • FRANCESCA ANTOCI
چکیده

Applying a theorem due to Belopol’ski and Birman, we show that the Laplace-Beltrami operator on 1-forms on R endowed with an asymptotically Euclidean metric has absolutely continuous spectrum equal to [0,+∞).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Scattering Theory and Applications

Classical scattering theory, by which we mean the scattering of acoustic and electromagnetic waves and quantum particles, is a very old discipline with roots in mathematical physics. It has also become an important part of the modern theory of linear partial differential equations. Spectral geometry is a slightly more recent subject, the goal of which is to understand the connections between th...

متن کامل

Spectrum of the Laplace–Beltrami operator on suspensions of toric automorphisms

The spectrum and the eigenbasis of the Laplace–Beltrami operator on the suspensions of toric automorphisms are investigated. A description in terms of solutions of one-dimensional Schrödinger’s equation is presented. Bibliography: 10 titles. §

متن کامل

ON THE ABSOLUTELY CONTINUOUS SPECTRUM OF THE LAPLACE-BELTRAMI OPERATOR ACTING ON p-FORMS FOR A CLASS OF WARPED PRODUCT METRICS

We explicitely compute the absolutely continuous spectrum of the Laplace-Beltrami operator for p-forms for the class of warped product metrics dσ = ydy + ydθ S , where y is a boundary defining function on the unit ball B(0, 1) in R .

متن کامل

Shape-based Transfer Function Using Laplace-Beltrami Operator

We exploit the Laplace-Beltrami operator to represent shapes which in turn is used for designing a shape based transfer function for volume rendering. Laplace-Beltrami spectral measures are isometry invariant and are one of the most powerful ways to represent shape, also called “Shape-DNA”. Isosurfaces are extracted from the volume data and the Laplace-Beltrami operator is applied on these extr...

متن کامل

A Survey of Inverse Spectral Results

The existence of the Laplace-Beltrami operator has allowed mathematicians to carry out Fourier analysis on Riemannian manifolds [2]. We recall that the Laplace-Beltrami operator ∆ on a compact Riemannian manifold has a discrete set of eigenvalues {λj}j=1, which satisfies λj →∞ as j →∞. This is known as the spectrum of the Laplace-Beltrami operator. Inverse spectral geometry studies how much of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003